實驗室常用光譜儀及其它們各自的原理
實驗室常用光譜儀及其它們各自的原理 |
光譜儀,又稱分光儀。以光電倍增管等光探測器在不同波長位置,測量譜線強度的裝置。其構造由一個入射狹縫,色散系統(tǒng),成像系統(tǒng)和一個或多個出射狹縫組成。以色散元件將輻射源的電磁輻射分離出所需要的波長或波長區(qū)域,并在選定的波長上(或掃描某一波段)進行強度測定。分為單色儀和多色儀兩種。
下面就介紹幾種實驗室常用的光譜儀的工作原理,它們分別是:熒光直讀光譜儀、紅外光譜儀、直讀光譜儀、成像光譜儀。
熒光直讀光譜儀的原理:
當能量高于原子內(nèi)層電子結合能的高能X射線與原子發(fā)生碰撞時,驅(qū)逐一個內(nèi)層電子而出現(xiàn)一個空穴,使整個原子體系處于不穩(wěn)定的激發(fā)態(tài),激發(fā)態(tài)原子壽命約為 (10)-12-(10)-14s,然后自發(fā)地由能量高的狀態(tài)躍遷到能量低的狀態(tài).這個過程稱為發(fā)射過程.發(fā)射過程既可以是非輻射躍遷,也可以是輻射躍遷.
當較外層的電子躍遷到空穴時,所釋放的能量隨即在原子內(nèi)部被吸收而逐出較外層的另一個次級光電子,此稱為俄歇效應,亦稱次級光電效應或效應,所逐出的次級光電子稱為俄歇電子.它的能量是特征的,與入射輻射的能量無關.當較外層的電子躍入內(nèi)層空穴所釋放的能量不在原子內(nèi)被吸收,而是以輻射形式放出,便產(chǎn)生X 射線熒光,其能量等于兩能級之間的能量差.因此,X射線熒光的能量或波長是特征性的,與元素有一一對應的關系.
K層電子被逐出后,其空穴可以被外層中 任一電子所填充,ad4yjmk從而可產(chǎn)生一系列的譜線,稱為K系譜線:
由L層躍遷到K層輻射的X射線叫Kα射線,由M層躍遷到K層輻射的X射線叫Kβ射線同樣,L層電子被逐出可以產(chǎn)生L系輻射.如果入射的X 射線使某元素的K層電子激發(fā)成光電子后L層電子躍遷到K層,此時就有能量ΔE釋放出來,且ΔE=EK-EL,這個能量是以X射線形式釋放,產(chǎn)生的就是Kα 射線,同樣還可以產(chǎn)生Kβ射線 ,L系射線等.
莫斯萊(H.G.Moseley) 發(fā)現(xiàn),熒光X射線的波長λ與元素的原子序數(shù)Z有關,其數(shù)學關系如下: λ=K(Z-s)-2這就是莫斯萊定律,式中K和S是常數(shù),因此,只要測出熒光X射線的波長,就可以知道元素的種類,這 就是熒光X射線定性分析的基礎.此外,熒光X射線的強度與相應元素的含量有一定的關系,據(jù)此,可以進行元素定量分析. 直讀光譜儀的原理:
直讀光譜儀采用原子發(fā)射光譜學的分析原理,樣品經(jīng)過電弧或火花放電激發(fā)成原子蒸汽,蒸汽中原子或離子被激發(fā)后產(chǎn)生發(fā)射光譜,發(fā)射光譜經(jīng)光導纖維進入光譜儀分光室色散成各光譜波段,根據(jù)每個元素發(fā)射波長范圍,通過光電管測量每個元素的譜線,每種元素發(fā)射光譜譜線強度正比于樣品中該元素含量,通過內(nèi)部預制校正曲線可以測定含量,直接以百分比濃度顯示。
其實大家不用跟一個名詞叫勁,直讀光譜儀它的正規(guī)名字叫原子發(fā)射光譜儀,管他叫直讀的原因是相對于攝譜儀和早期的發(fā)射光譜儀而言,由于在70年代以前還沒有計算機采用,所有的光電轉換出來的電流信號都用數(shù)碼管讀數(shù),然后在對數(shù)轉換紙上繪出曲線并求出含量值,計算機技術在光譜儀應用后,所有的數(shù)據(jù)處理全部由計算機完成,可以直接換算出含量,所以比較形象的管它叫直接可以讀出結果,簡稱就叫直讀了,在國外沒有這個概念。
直讀光譜儀是火花光譜,奧秋儀器主要用于分析塊狀或條狀金屬樣品,ICP用液體進樣,使用范圍很廣,分光裝置也差別很大.
直讀光譜儀只要平時清理維護的好,曲線做的沒什么問題,用起來很方便的,做一個樣很快的,磨好樣后在上面一激發(fā)就出結果了。ICP-AES做一次應該挺慢,他們區(qū)別應該就是制樣進樣方式不同,原理都差不多,直讀用的是發(fā)射光譜,ICP是吸收光譜。
成像光譜儀:
成像光譜就是在特定光譜域以高光譜分辨率同時獲得連續(xù)的地物光譜圖像,這使得遙感應用可以在光譜維上進行空間展開,定量分析地球表層生物物理化學過程與參數(shù)。
紅外光譜儀的原理:
紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是*的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環(huán)境、地質(zhì)、生物、醫(yī)學、藥物、農(nóng)業(yè)、食品、法庭鑒定和工業(yè)過程控制等多方面的分析測定中都有十分廣泛的應用。
紅外光譜可以研究分子的結構和化學鍵,如力常數(shù)的測定和分子對稱性等,利用紅外光譜方法可測定分子的鍵長和鍵角,并由此推測分子的立體構型。根據(jù)所得的力常數(shù)可推知化學鍵的強弱,由簡正頻率計算熱力學函數(shù)等。分子中的某些基團或化學鍵在不同化合物中所對應的譜帶波數(shù)基本上是固定的或只在小波段范圍內(nèi)變化,因此許多有機官能團例如甲基、亞甲基、羰基,氰基,羥基,胺基等等在紅外光譜中都有特征吸收,通過紅外光譜測定,人們就可以判定未知樣品中存在哪些有機官能團,這為zui終確定未知物的化學結構奠定了基礎。
由于分子內(nèi)和分子間相互作用,有機官能團的特征頻率會由于官能團所處的化學環(huán)境不同而發(fā)生微細變化,這為研究表征分子內(nèi)、分子間相互作用創(chuàng)造了條件。
分子在低波數(shù)區(qū)的許多簡正振動往往涉及分子中全部原子,不同的分子的振動方式彼此不同,這使得紅外光譜具有像指紋一樣高度的特征性,稱為指紋區(qū)。利用這一特點,人們采集了成千上萬種已知化合物的紅外光譜,并把它們存入計算機中,編成紅外光譜標準譜圖庫。
人們只需把測得未知物的紅外光譜與標準庫中的光譜進行比對,就可以迅速判定未知化合物的成份。
當代紅外光譜技術的發(fā)展已使紅外光譜的意義遠遠超越了對樣品進行簡單的常規(guī)測試并從而推斷化合物的組成的階段。紅外光譜儀與其它多種測試手段聯(lián)用衍生出許多新的分子光譜領域,例如,色譜技術與紅外光譜儀聯(lián)合為深化認識復雜的混合物體系中各種組份的化學結構創(chuàng)造了機會;把紅外光譜儀與顯微鏡方法結合起來,形成紅外成像技術,用于研究非均相體系的形態(tài)結構,由于紅外光譜能利用其特征譜帶有效地區(qū)分不同化合物,這使得該方法具有其它方法難以匹敵的化學反差。 |
下一篇:移液器的運用